Time Discrete Geodesic Paths in the Space of Images
نویسندگان
چکیده
منابع مشابه
Time Discrete Geodesic Paths in the Space of Images
In this paper the space of images is considered as a Riemannian manifold using the metamorphosis approach [24, 34, 35], where the underlying Riemannian metric simultaneously measures the cost of image transport and intensity variation. A robust and effective variational time discretization of geodesics paths is proposed. This requires to minimize a discrete path energy consisting of a sum of co...
متن کاملVisibility in Discrete Geometry: An Application to Discrete Geodesic Paths
In this article, we present a discrete definition of the classical visibility in computational geometry. We present algorithms to compute the set of pixels in a non-convex domain that are visible from a source pixel. Based on these definitions, we define discrete geodesic paths in discrete domain with obstacles. This allows us to introduce a new geodesic metric in discrete geometry.
متن کاملDiscrete Geodesic Regression in Shape Space
A new approach for the effective computation of geodesic regression curves in shape spaces is presented. Here, one asks for a geodesic curve on the shape manifold that minimizes a sum of dissimilarity measures between given twoor three-dimensional input shapes and corresponding shapes along the regression curve. The proposed method is based on a variational time discretization of geodesics. Cur...
متن کاملDiscrete Geodesic Calculus in Shape Space
Based on a local approximation of the Riemannian distance on a manifold by a computationally cheap dissimilarity measure, a time discrete geodesic calculus is developed, and applications to shape space are explored. The dissimilarity measure is derived from a deformation energy whose Hessian reproduces the underlying Riemannian metric, and it is used to define length and energy of discrete path...
متن کاملElastic Geodesic Paths in Shape Space of Parametrized Surfaces
This paper presents a novel Riemannian framework for shape analysis of parameterized surfaces. In particular, it provides efficient algorithms for computing geodesic paths which, in turn, are important for comparing, matching, and deforming surfaces. The novelty of this framework is that geodesics are invariant to the parameterizations of surfaces and other shape-preserving transformations of s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Imaging Sciences
سال: 2015
ISSN: 1936-4954
DOI: 10.1137/140970719